Zhengzhou Commodity Exchange
Z.CEAPI Handbook

Version 2.1

This document is applicable to ZCEAPI V2.1.

Zhengzhou Commodity Exchange
August 2021

Contents

REVISION HISTOTY ..eoutitieiieeiieiiee ettt sttt ettt s ae ettt e e s bt et e sbe et e besaeentesbeeneenee 1
L. OVEIVICW .evivieieieeiiete et ete et et e ste et etesteestesteest e beeseessasseessessesseesseeseensesseessanseeseensasseensansesssensesseensanes 2
1.1 PUIPOSE AN SCOPE ..ottt ettt sttt sttt ettt sttt e sbeeatesteeseesesseensesseens 2
1.2 Related DOCUMENLSc.eeiiieieiiiieiieie ettt sttt ettt ettt sbe et e sbesae e e sbeenee e 2
1.3 TNEEOMUCTION ...ttt ettt ettt e et e b e e se e b e sseessesseesseseessenseessensessaensesseenns 2
1.4 Location 0f the ZCEAPL......c.ccieiiiieieeeee ettt sttt sbe e aesreennens 3
1.5 Communication Method of the ZCEAPcccoviriiiiiieiceecee e 3
1.6 Operating Environment for the ZCEAPLcccooieiiiiiiieieceeee e 4
1.7 Notes for the ZCEAPI-related DOCUMENTSc.eecveriieieriieieiieiieieee et 4
2. Instructions for the ZCEAPTooiiiiiieee ettt ettt st eaeens 4
2.1 OVETVIEW ..euvieieniietieiteeteeetesteette st st esseeseebeaseesseseassesseassesseassensasssessenseassanseassensasssensanseessensennes 5
2.2 The Thread-based ATCRItECIUIEcc.ieveviieeieieeieieete ettt ettt sae e esaesseesnensens 5
2.3 BASIC PIOCESSeueeiieeieiieiieie sttt ettt sttt sttt et et sh et st e st et es e et e saeentesbeenbenaeeneetesreens 6
2.3.1 Initialize the ZCEAPL.......ccooieieieieiee ettt 6
2.3.2 Create an EXchange COonNeCtioNcceeeeeierieeienieeieriesieeiesieeeessesreesesaeeaessesssensenns 6
2.3.3 Assign a Callback Function to @ Link.........cccoeiriiininiiniiieiiieeeeeeeeeee 7
2.3.3.1 Define a Callback FUNCHOMNcceeviiriiiiiriiiieiesiiete sttt 7
2.3.3.2 Set a Callback FUNCHONccveiiriieiiiieiesieeeeeee ettt s ene 8
2.3.4 Connect to the EXChangecccovvevieriirieniiiieieseeeeeee e 8
2.3.5 Log in to the EXCRANGEcc.ooieiiiiieieiieeeee et 9
2.3.6 Read and Write Data Packetsccovieieriiiieniiiiciesiceieie ettt 10
2.3.7 Traverse Data PaCKetScccouieiuiiiiiiiie ettt 10
2.3.8 Send Data PaCKELSc.ceoueruiiieieiiieieieeiee ettt sttt sttt 11
2.3.9 RECEIVE DALA....uieieiiciieiecieeete ettt ettt et e e be et e s be e e sbeseeensesreens 11

2.3 10 LLOZ OUL ..ttt ettt ettt et ettt e e et e et e et e et esae e et e e bt e bt e eneeenteeneanne 11
2.3.11 F1ee @ CONMECIONeoviriieieteeiieieeiiesie sttt sttt eeeeteete st et e beeseeneesbeensesbeeneensesneenes 12
2.3.12 Stop the ZCEAPI SEIVICE ...vovvieieiieiieiesiieieete ettt sttt ettt re et sae e b e 12

3. DefinTtion Of DAta........ccuiiieiiiiiieieiieeeeeeee ettt e be b e beesa e beeneenes 12
3.1 BasiC TYPES OF DAtal..cc.eeuiriieiiiieeieieeitee sttt sttt sttt st 12
3.2 Types of Dates and TImMeEcceouirieriiiieierieeee ettt ettt 13
3.3 APL BOOL ...ttt ettt sttt be b e nee 13
B4 MATKEE ID ..ottt sttt sttt ere e te bt entesaeennen 13
3.5 Definition of the Types of Data Fieldsccocueririeriniiiiieeiceeeeeeee e 13
3.6 Flagg@ing of Data StrEAIMScceevvieieriieiieiirieeiesieetesteeseeieseeeaesteesaesseessessesssesesseessesseensenns 13
3.7 Status 0f Data StICAMISceevviivieieitieeieie ettt et e ste et e et e e steeaesbeeseesbesteessesseessessesssensenns 13
B8 HANAICS ...ttt ettt 14
3.9 Callback Functions for Return of Data Packetscccecveririeniinienieeieieeeeieseeeeie e 14
3.10 Callback Functions for the Status of @ LinKccceeirieriinieciinieieniecieeseeese e 14
4. Introduction t0 FUNCLIONScccueiiiriieiiiiieiecee ettt ettt st enee st eneens 15
4.1 Management 0f the ZCEAPLc.occoeoiiiieiiieieeceeeet ettt eeees 15
4.1.1 Get Version Numbers of the ZCEAPIcccooiieieiiiieieceeeeee e 15
4.1.2 Initialize the ZCEAPL.......ccoooiiieieeeeeeeee ettt aes 15
4.1.3 Stop the ZCEAPL SETVICEeocuiriieieiieiesie ettt st 16
4.1.4 Get CUITENE TIME ..o.veeviieieieeiieieeieeeesie ettt este et e st e eeeeaesteeaesbeeseessessaessessesssesesseensenns 16

4.2 Management of Data Packetscccoevieriirieiiinieeieceeeeee e e 16
4.2.1 Create @ Data PaCKetcccoevuirieiiiiieiecieeeeeeee e 16
4.2.2 Recycle a Data PaCKetccvecviiiieiiiiieieiieieieeee ettt 16

4.3 Operations of MesSage Dataccocueeieriirieriiieiesieeerie ettt 17
4.3.1 Get aMesSAZE ID ..ot 17
4.3.2 Set @ MESSAZE ID ..ottt 17
4.3.3 Get the Data Type of @ Field.......cccevvivieiiiiieiiiceeceeeeeee e 17

4.4 Operations Of FICLAScc.eeiiriieiiiieieiecee ettt 18
4.4.1 Get Characters from a Data Packet.........ccccoveveriiiienienieieceeieeeeeeceee e 18
4.4.2 Set Character-type Data Fields in a Data Packet...........ccoccovveienincienienieceeieeeene, 18
4.4.3 Get Integers from a Data Packetccccecvevirieriinieniiieeeeeeeeee e 19
4.4.4 Set Integer-type Data Fields in a Data Packet...........cccooeeieiinienininiieiececene 19

II

4.4.5 Get Doubles from a Data Packetcoooouuiiiiiiiieeeeeeee e 20

4.4.6 Set a Double-type Data Field in a Data Packet...........ccocveveriiniecienieieieeieieeeenenn 20
4.4.7 Get Character Strings from a Data Packet...........ccocoevevirieniniininieeeeeeee 21
4.4.8 Set Character-string-type Data Fields in a Data Packet...........ccccoevecieninieniennnennn, 22
4.4.9 Get Date and Time from a Data Packet..........ccccevievieriecieniiienicceceeeeee e 23
4.4.10 Set DateTime-type Data Fields in a Data Packet..........cccccoveeveniinieninieinicenee, 23
4.4.11 Judge Whether a Field Is NUll.......cccoooiiiiiieiinieieeeeeeeeeee e 24
4.4.12 Remove a Particular Fieldc.ocoeceiiieiiniiiieieceeeeeeeeeeee e 24
4.4.13 Remove All Fields from a Data Packet........c..cocccvirninininicnineininncnecee 24
4.4.14 Copy a Data PaCKetcceeiiiiiiieiiciiceecee et 25
4.5 Traversal Of Data.........cciiieieriiiieiieiecieret ettt sbe e esbesbeessenseens 25
4.5.1 Move a Data Field Pointer to the First Fieldcccccccovninininiicccnininininecnens 25
4.5.2 Identify the Next Data Field........ccccooiiiriiininieeeeeeeeeeee e 26
4.6 Management Of CONNECTIONccveeieriieierieitieiesteeterte et eteeteeseesteeseessesreesaesseeseessesssessesseenns 26
4.6.1 Create EXChange CONNECIONccueevieriiriieienieeienieeieetesteesesteeeeessesseesesreessessessnens 26
4.6.2 Set ConNection PTOPEITIESccvivieriiriieieiieieitetete sttt ettt enes 27
4.6.3 RUN AN EVENL....iiiiiiiiiie et ettt et 27
4.6.4 Initiate a Connection to the EXchangeccccoovvvieiiiieiiinieiececeecceee 28
4.6.5 Judge Whether a Connection Has Been Established...........ccoccoveniniininininnnn 28
4.6.6 Log in t0 the EXChaNZEc.ccveieiiieieiiiiceee ettt 28
4.60.7 LLOZ OUL ..ttt ettt ettt ettt ettt e ae e st e et e e bt e e nteente e st e bt e enbeenseenbeeeneeenreens 29
4.6.8 Send a Data PaCKELc..ccueceriririniniiiciceccnneseneeeeeeeee s 30
4.6.9 Close a Connection to the EXchangeccoocoevieviirieniinieiieiceeceeeeee e 31
4.6.10 Close and Free an Exchange Connectionceecvevveeeerieneerieneeeenieeeesieenennenns 31
4.6.11 Get the Status of @ Data Streamcoccoevveeerinineninencccceneseeeeeeee e 31
4.7 Set a Callback FUNCHION ...c..cc.evviiiiiieiiiiiricnectcctete ettt 32
4.7.1 Set a Notice for DiSCONNECTIONccuveciiirieiiiieieieeitete ettt esie e ae e eresseeeeeneens 32
4.7.2 Set a NOtiCe fOr EITOTS ...oouviiiieieiieiieiecieieseetee ettt 32
4.7.3 Set a Notice for Data ReCEIPLt......c.eevveruirieriirieiiciieierieeeeetee st 32

II

Zhengzhou Commodity Exchange ZCEAPI Handbook

Revision History

API Date Change Notes
Vers
ion
Revise
)) instructions for
2.0.0 lz)glczgmber Created instructions the new version
of the handbook
on the basis of
the V1.1.3.7
201 January 20, | Added instructions on the use of emergency addresses
2021 for three functions as follows: API Init; API Stop;
API_ConnectEx
1. Deleted the API ConnectEx and added the
August 8, | API Connect; 2. Added parameters on whether to
2.1.0 2021 automatically initiate the business-driven thread for the

function API CreateExchgConnection, and in the
meantime, added the API RunEvent; and 3. Deleted
descriptions for the query stream and emergency
addresses

Zhengzhou Commodity Exchange ZCEAPI Handbook

1. Overview

1.1 Purpose and Scope
This document is all about the instructions on how to use the remote trading API (“ZCEAPI”)

issued by Zhengzhou Commodity Exchange (hereinafter referred to as “Exchange”). Its intended
audience are software developers who use the ZCEAPI to develop trading or quotation software
that communicates with the trading system of this Exchange. As this document can provide
guidance for developers who use the ZCEAPI to develop software mentioned above, all users of

the ZCEAPI are therefore expected to read this document carefully.

If there is any discrepancy between what is described in this document and the reality, please

contact the technical support of this Exchange in a timely manner to confirm it.

Developers shall make reasonable use of various development interfaces and shall not maliciously
affect or compromise any systems of this Exchange. Moreover, they shall fully test the systems
developed by them to ensure that their systems have the right functions. Furthermore, developers
shall not develop functions that access the systems of this Exchange in violation of rules or
regulations, including by cracking APIs or protocols or by any other similar means.

The right to interpret this document rests on Zhengzhou Commodity Exchange.

1.2 Related Documents
Released together with this document is the ZCEAPI Reference Manual of Zhengzhou Commodity

Exchange (i.e., the Zhengzhou Commodity Exchange Futures Trading Data Exchange Interface
Specifications, hereinafter referred to as ZCEAPI Reference Manual).

API Demos are released in conjunction with this document, for they demonstrate the basic method
to use the ZCEAPI. Therefore, developers are expected to use the ZCEAPI with reference to the

descriptions in the Demos.

1.3 Introduction
The ZCEAPI is an API used by Zhengzhou Commodity Exchange for remote trading purposes. It

is used by a client’s applications to access and communicate with the trading system of this
Exchange. The ZCEAPI provides programmers with a set of APIs and a simple protocol for
conveying messages on trading data and quotations.

The ZCEAPI encapsulates the underlying connection and communication protocol with which to
communicate with the trading system of this Exchange. In using the ZCEAPI to communicate with
this Exchange, a user needs only to assign the ZCEAPI data packets appropriate values and then
call the right functions to send the packages with reference to the ZCEAPI Reference Manual.

The heartbeat mechanism will be maintained by the ZCEAPI itself. The encryption, decryption,
compression, and decompression of data, among other things, will be done all by the ZCEAPI. All
a user has to do is to select appropriate parameters for the APIL.

The ZCEAPI uses callback mechanisms to notify users of link events and data receipt. In the case
of a link event, such as link error, disconnection, and receipt of data packets, the ZCEAPI will

automatically call back the function set by users to hand the event.

Zhengzhou Commodity Exchange ZCEAPI Handbook
In short, with the help of the ZCEAPI, a user can conveniently communicate with, and finish

transaction processing on, the trading system of this Exchange.

1.4 Location of the ZCEAPI
The ZCEAPI is used by trading software developers on the application end. As part of the client’s

application, it operates on the client side of the trading system (as shown in the following chart).

Trading system

Front

¥

Information exchange

Function call

¥

Members’ system

1.5 Communication Method of the ZCEAPI

In business terms, the communication between the ZCEAPI and this Exchange’s backend system
falls into three modes, namely, conservational communication, private communication, and
broadcast communication (additional modes may be added in the future). In whichever mode, a
user can always connect his applications to this Exchange’s trading system through a reliable TCP
link created by the ZCEAPI so as to perform his trading business or obtain market data.

The conversational mode (the resulting data stream is thus conversational stream) enables all
transaction processing and part of the query operations and supports all the functions of data
exchange between the trading system of this Exchange and the systems of its members.

The private mode (the resulting data stream is private stream) is a reliable data link that serves as a
supplement to the conversational mode. Its primary functions include:

1) when an entry in the order book undergoes a change in status or quantity, the trading system
will send order status confirmation, SPD arbitrage confirmation, hedging confirmation, option
exercise confirmation, or quote response confirmation messages through the private stream.

2) when a record of market match undergoes a change, the trading system will send the

TradelnsertSingle (PID=0x11001) message through the private stream.

Zhengzhou Commodity Exchange ZCEAPI Handbook

The broadcast mode (the resulting data stream is broadcast stream) is a supplement to the
conversational mode, too. When public information, e.g., system status, contract information,
exchange bulletins, and market developments, undergoes any change, the trading system will
circulate such change to the systems of members through the broadcast mode to reduce the number

of queries made by members and accelerate the feedback of information to them.

On the underlying level, the ZCEAPI offers optional links, i.e., TCP and UDP, to communicate
with this Exchange’s trading system. It offers a TCP link for the data stream, including
conversational, private, and broadcast streams, of each communication mode. For the broadcast
stream, the underlying communication may be added an extra UDP link. The manner (unicast or
multicast) of the UDP communication is contingent on the protocol adopted by a user to log in to
the broadcast stream (the phase 5 trading system supports protocol 2 and 11). If a user logs in
through the protocol 11 or a higher version of such protocol, the trading system will broadcast
quotation changes, among other things, through the UDP link. For details, please refer to the
ZCEAPI Reference Manual of this Exchange.

1.6 Operating Environment for the ZCEAPI
The ZCEAPI can run on both the Windows and Linux operating systems. It offers 64-bit versions

for both the platforms. However, the windows system must be of the version NT10.0 or higher
(Note: the latest version requires the test of compatibility); the Linux system must be of the kernel
version 3.10 or higher and the gcc version 4.8.5 or higher (support the standard C++11 or later).
On the Windows platform, the ZCEAPI is to be called by an application in the form of dynamic
link library (.dll). On the Linux/Unix platform, however, it is to be called in the form of shared
objects (.s0). The dll or so documents will be released together with this document.

Except in the case of the standard C++ runtime library, a user does not have to make special
configuration for his operating system to use the ZCEAPI. All he has to do is to obtain the dll or

so documents, as well as corresponding auxiliary files, from the platform of this Exchange.

1.7 Notes for the ZCEAPI-related Documents
The ZCEAPI-related documents released include the following:

For the Windows platform:

ZCEFTDAPI.dII (a dynamic link library file for the ZCEAPI)

ZCEFTDAPLIib (a guiding library file for the ZCEFTDAPI.dII, used by C/C++ users)

FTDAPLh (an interface definition file for the ZCEAPI. C/C++ users can directly use it, whereas
the users of other languages can, according to the definition of c-style interface functions in the
file, get the declarations and categories of the interface functions in their own languages.)

For the Linux platform:

libZCEFTDAPI.so (a shared library file for the ZCEAPI)

FTDAPLh (an interface definition file for the ZCEAPI. C/C++ users can directly use it.)

2. Instructions for the ZCEAPI

Zhengzhou Commodity Exchange ZCEAPI Handbook

2.1 Overview
The ZCEAPI appears in the system as a dynamic library. It provides standardized C-style

interface functions, as well as data categories that comply with the definitions of the C language.

For the definition of these functions and categories, please see notes in Part 4 of this document.

To use the ZCEAPI, a user must download the ZCEAPI release packages from the appropriate
platform of this Exchange. The packages contain the documents necessary for a user to use the
APL

In using a dynamic link library, a programmer normally must make a declaration on the interface
provided by the library. When using the ZCEAPI, a programmer must also make a declaration on
the definition of interface functions and of basic data. A C/C++ programmer can directly use the
FTDAPL files released by a dynamic library, for the files provide all the declarations required of
the ZCEAPI. On the other hand, a user of other software development languages must make
declarations for the ZCEAPI interfaces in their own languages in accordance with the interface
declarations in the FTDAPL file or the explanations in relevant parts of this document.

Worthy of attention is that the ZCEAPI provides its own format for data packets, because it is an
interface used to exchange data. For different business, a user can complete or read different data
fields. For all business types and data fields, the ZCEAPI has offered corresponding codes. For the
detail of such codes, please refer to the ZCEAPI Reference Manual of this Exchange. Given the
language used, a user can also define their own constants in their programs in accordance with the
definitions given in the ZCEAPI Reference Manual of this Exchange.

Note: For the method to use the standard dynamic library for various platforms, please refer to the
technical files for relevant platforms.

To use the ZCEAPI is to use the interface provided by the former. The use of the ZCEAPI must
follow some steps in succession. Firstly, a user must call the function API Init to initialize the
API, and he must succeed in doing so in order to proceed to the next step. Secondly, he must
create appropriate connections as per the data stream to be accessed (according to the
instructions in version 1.5, the trading system of this Exchange allows only that a connection
access a data stream). As the ZCEAPI processes events through callback mechanisms, the user
must assign a callback event handler to each connection. That done, he shall create the link to this
Exchange, log in to relevant data stream, and send or receive trading data. After all transactions
are finished, he shall release the connection created, and call the function API_Stop to cease the
API service.

The ZCEAPI interface is non-thread safe.

For detailed instructions for the ZCEAPI, please refer to section 2.3.

2.2 The Thread-based Architecture

The ZCEAPI offers two driver models, i.e., the self-driven mode and the user-driven mode.
Specifically, a user can opt to let the API initiate a thread to drive a link event (mainly data receipt
and basic parsing) at the time of creating a connection, or alternatively, initiate a thread on his
own to call an API event-drive function to drive a link event.

As stated above, the ZCEAPI adopts callback functions to handle events, so when a user creates a

connection, he must assign a callback function to the connection. In the self-driven mode, the API
5

Zhengzhou Commodity Exchange ZCEAPI Handbook
will thus voluntarily initiate a thread to help drive the event of that connection. In a user-driven

mode, however, a user must initiate a thread on his own to call an event-driven function and in
turn to drive a link event.

When a user chooses to receive a broadcast stream through the UDP protocol (for which the user
must log in to the broadcast stream using a protocol of the version 11 or higher), the ZCEAPI will
separately initiate an additional thread to drive the receipt of the UDP data and notify the user

through a callback mechanism.

2.3 Basic Process
The process of using the ZCEAPI in the self-driven mode is largely as follows:

2.3.1 Initialize the ZCEAPI
A user calls the function API_Init to initialize the ZCEAPI.

A successful initialization is the basis on which to correctly use the ZCEAPI. If the initialization

process fails, the API may not operate smoothly.

Example:
if (APIL_Init("./log", "./APIData") == API_TRUE)
{
std::cout << "Succeed in Init API!!!" << std::endl;
H
else
{
std::cout << "Fail to Init API!!!" << std::end];
return 1;
H
Note: For the use of the initialization function API Init, please refer to Part 4 of this
handbook.

2.3.2 Create an Exchange Connection
A user calls the function API_CreateExchgConnection to create a connection. To access the

Exchange through the ZCEAPI, a user must create a connection in the first place. The connection
handle returned by the CreateExchgConnection function is the basis of the communication with
the Exchange.

Example:

Zhengzhou Commodity Exchange ZCEAPI Handbook

API BOOL Encrypt = API TRUE; /Ito encrypt? 1: Yes, 0: No
API BOOL Commpress = API TRUE; //to compress? 1: Yes, 0: No

MARKET ID Market ID = MARKET ZCE; //i.e.,ZCE 1

int cpunum_for driver=1; //Bind the connected driver thread to a designated CPU
core (coded “17)

int cpunum_for udp =- 1; //The UDP receive thread here is not bound to the CPU
- (In this example, the user logs in to a conversational

stream, which will not initiate the UDP receive thread.

Therefore, there is no need to assign a CPU number tq

this parameter. Even if it is assigned, it is void.)

//Create a connection for the conversational stream
ExchgConnectionHandle DialogConn = API_CreateExchgConnection(Encrypt,

Commpress, Market ID, cpunum_for driver, cpunum_for udp);

if (DialogConn == NULL)
{

std::cout << "Can not create Dialog connection to ZCE ! " <<

std::endl; return 3;

Notes:

1) For the use of the function API_CreateExchgConnection, please refer to Part 4 of this handbook.
Creating a connection does not mean establishing a connection to the Exchange.

2) The function API CreateExchgConnection has deleted heartbeat parameters, so that the
heartbeat interval and heartbeat timeout will no longer be assigned by users themselves.

2.3.3 Assign a Callback Function to a Link

Once a link is successfully created, a user can then assign a callback function to the link. It is
recommended that the callback function be assigned immediately after a link is created.

The assignment of a callback function is not a must (as in the case that a user is not concerned
about what happens to a link), but if a link is not assigned such function, it may affect the
fulfillment of some transactions of a user, in that the user will not be informed of some link

events.

2.3.3.1 Define a Callback Function
A user must define a callback function before assigning it to a link. The callback functions in the

ZCEAPI fall into two categories: those for the status of a link and those for the return of data
packets.

For the definition of the categories of callback functions, please refer to the definition of callback

functions in Part 3 of this handbook.
Example:

Zhengzhou Commodity Exchange ZCEAPI Handbook

//Define a callback function for an error

void errorsShow(void * CallBackArg,ExchgConnectionHandle,int error_code,const char*

error_text)

{

cout<<" link error ! "<<" The error is about "<<error text<<" The error code is:

"<<error_code<<endl;

}

2.3.3.2 Set a Callback Function
Once a callback function is defined, a user can call a ZCEAPI function to set the callback function.

Example:

//Set a callback function for a link error
API_SetErrorCallBack(conn, errorsShow,this); //The third is a callback

parameter

//Set a callback function for link close
API SetCloseCallBack(conn, OnAPIClose,NULL);

Note: For details of the setting of callback function interfaces, please refer to Part 4.7 of this
handbook.

2.3.4 Connect to the Exchange

It is recommended that before initiating a connection to the Exchange, a user call the function
API SetConnectionOpt to set the TCP heartbeat for the link. This can help to prevent the
operating system from taking too much time to detect a link error when the socket is disconnected
in a non-graceful manner.

A user must call the function API_Connect to initiate a connection to the Exchange. If the
connection is successful, a connection channel is thus opened. (The first parameter of the
API_Connect function is a connection handle. In the case of a successful connection, this
connection object is then opened. Subsequently, this connection object can be used to
communicate with the Exchange.)

Example:

Zhengzhou Commodity Exchange ZCEAPI Handbook

//Initiate a connection to the Exchange

char IpAddr[20] ="218.29.68.231"; //The 1P address of the login service of the
int port = 22677; Exchange
char ErrMsg[128]; //Connect to the port of the Exchange

if (API_Connect(DialogConn, IpAddr, port, 5000, ErrMsg) !'=ERR_SUCCESS)
{//Connection failed

cout<<" Can not connect with CZCE! "<<end]l;
return 0;

}

else

cout<<" Connect CZCE successfully "<<endl;

Notes:

1) For the function API_Init, please refer to Part 4 of this handbook.

2) Once a connection is established, a user shall log in to the trading system of the Exchange as
soon as possible; otherwise, the connection will become null (where no data stream is accessed)

and, after some time, be automatically shut down.

3) Different business streams use separate port numbers. Please assign the numbers according to

notices of the Exchange.

2.3.5 Log in to the Exchange
Once a connection is established, a user can then log in to the system of the Exchange through the

connection. Through a connection, a user can log in to only one of the conversational, private,
and broadcast streams.

The process of logging in to a stream is described as follows:
1) call the API_AllocPackage function to generate a ZCEAPI data packet;

2) call the API_SetPID function to set a PID for the data packet (the PID for login to messages is:
0x00016);

3) call an appropriate field function to complete the fields for the data packet (e.g., APl _SFInt
(APIpkg, FID SequenceNo, 1));

4) call the API Login function to log in to the Exchange;

5) judge whether the login is successful according to the value returned by the API Login
function, and obtain the information contained in the login response packet (if the return value is
not void); and

6) call the API_FreePackage function to release the data packet generated in step 1.

Notes:

1) For the use of specific functions, please refer to Part 4 of this handbook. For examples, please
refer to the APIDemo released together with this document.

2) Once used, a data packet need not necessarily be released. It can be used again, but must be

revised or emptied given the reality.

Zhengzhou Commodity Exchange ZCEAPI Handbook
3) Because the login timeout parameter in the API Login function is set too small or the network

connectivity is poor, a user may encounter login timeout and therefore need to adjust the wait

value.

4) Even if a user opts to receive a UDP broadcast stream according to the protocol version 11, he

must log in to the broadcast stream in the first place.
ProtocolVersion=2, the TCP method to be adopted for the broadcast stream

ProtocolVersion=11, the UDP method to be adopted for the broadcast stream

2.3.6 Read and Write Data Packets

Having received a valid ZCEAPI data packet handle (which may be generated by a ZCEAPI
interface function or conveyed by a callback function), a user can read and write the data packet
pointed by the handle. Reading and writing the data packet is a primary means for a user to obtain
and send data through the ZCEAPL

It is quite easy to read and write the ZCEAPI data packets. To do so, a user needs only to select an
appropriate ZCEAPI function according to the type of a data field (for details, please refer to the
ZCEAPI Reference Manual’s provisions governing the categories of fields for data packets) to be
read and written and then do the reading and writing accordingly.

Example:

According to the ZCEAPI Reference Manual, we can find out that the FID BuyPrice field is of
the LN-4 data type, that is, doubles with the accuracy of 4 decimal places. Accordingly, we can
read and write the field, using the functions API_GFDouble and API_SFDouble provided by the
ZCEAPI to address doubles.

double d = API_GFDouble(APIpkg, FID_BuyPrice); //read
API_SFDouble(APIpkg, FID BuyPrice, 1555.552, 4); //assign value

Notes:

1) In reading and writing data packets, a user must, according to the type of the data field to be
read and written, select appropriate ZCEAPI functions designed to do so. For the use and

applicability of specific functions, please refer to Part 4 of this handbook.

2) For use cases, please refer to relevant part of the APIDemo.

2.3.7 Traverse Data Packets

Traversal is a supplement to the reading and writing of data packets. On obtaining a valid data
packet, a user can traverse it immediately. Traversal allows for no writing, but reading of the data
packet only.

Before traversing a data packet, a user must call the API_FirstField function to identify the first
field and then call the API_NextField function to do the traversal. To use a traversal function to
read the value of a field, a user must correctly identify the data type of the field and choose an
appropriate function.

Notes:

10

Zhengzhou Commodity Exchange ZCEAPI Handbook

The order of fields in a ZCEAPI data packet has nothing to do with the order of fields written
to the packet. Before the API FirstField and API NextField operations come to an end, a

user can not add or delete fields in a data packet.

The traversal function is non-thread safe, so do not traverse a data packet through multiple

threads at the same time.
For the functions used to traverse data packets, please refer to Part 4 of this handbook.

For use cases, please refer to relevant part of the APIDemo.

2.3.8 Send Data Packets

On logging in to a conversational stream, a user can call the API Send function to send various
data packets to the Exchange. The process of sending a data packet is largely the same as that
of login:

1) call the API_AllocPackage function to generate a ZCEAPI data packet;

2) call the API_SetPID function to set a PID for the data packet;

3) call a corresponding function to complete the fields in the data packet;

4) call the API_Send function to send the completed data packet (Note: The API_Send function
for the same connection object is non-thread safe);

5) judge whether the packet has been successfully sent according to the value returned by the
API_Send function; and

6) call the API_FreePackage function to release the data packet generated in step 1.
Note: For the use of specific functions, please refer to Part 4 of this handbook. Once used, a data
packet need not necessarily be released. It can be used again, but must be revised or emptied

given the reality.

2.3.9 Receive Data
The ZCEAPI will automatically receive the data sent by the Exchange and convert them into data

packets. A user can receive the ZCEAPI data packet by the following methods:
® Receiving login response data packets

through the output of the login function. For details, please refer to the definition of the
API Login function.

® Receiving logout response data packets

through the output of the logout function. For details, please refer to the definition of the
API Logout function.

® Receiving ordinary Exchange response data packets

through setting callback functions to receive data packets
Note: For use cases, please refer to relevant part of the APIDemo.

2.3.10 Log out

On finishing all work, a user can log out of the Exchange’s trading system. In essence, logout is to
send a logout data packet to the system of the Exchange, and, when receiving a correct logout
confirmation from the exchange or the link is disconnected, the exit is done.

11

Zhengzhou Commodity Exchange ZCEAPI Handbook
A user can selectively log out of any stream he has logged in to, but he can only exit one stream at

a time.

Logout basically follows the same steps as login:

1) call the API_AllocPackage function to generate a ZCEAPI data packet;

2) call the API_SetPID function to set a PID for the data packet (logout PID: 0x00017);

3) call an appropriate field function to complete the fields for the data packet (e.g., API SFInt
(APIpkg, FID SequenceNo, 1));

4) call the API Logout function to send the completed data packet;

5) judge whether the logout is successful according to the value returned by the API Logout
function, and according to the output of the function (if the output value is not void), obtain the
logout response returned by the Exchange; and

6) call the API_FreePackage function to release the data packet generated in step 1.

Notes:

1) For the use of specific functions, please refer to Part 4 of this handbook.

2) Once used, a data packet need not necessarily be released. It can be used again, but must be
revised or emptied given the reality.

2.3.11 Free a Connection

After logging out of the Exchange’s system and before exiting an application, a user shall break
his link with the Exchange first and then release his connection.

A user can directly call the API_DisConnect function to break a link with the Exchange. That
done, a link with the Exchange will be severed, but the connection to the Exchange will remain.
So, a user can either call the API Connect function to connect to the Exchange again or call the
API FreeExchgConnection function to directly break the link and release the connection.

Notes:

Once released, a connection cannot be used again.

For the use of specific functions, please refer to Part 4 of this handbook.

2.3.12 Stop the ZCEAPI Service
It is advised that, before exiting an application that calls the ZCEAPI, a user should in the first

place call the API_Stop function to cease the service of the API. Here, the service cessation means

to stop the diagnostic function of the ZCEAPI.

Further, it is advised that a user not arbitrarily stop the service of the ZCEAPI; otherwise, the
work of the API may be adversely affected.

3. Definition of Data
3.1 Basic Types of Data

typedef unsigned short int API_UINT16;
typedef unsigned char API_BYTE;
typedef unsigned int API_UINT32,

12

Zhengzhou Commodity Exchange ZCEAPI Handbook

3.2 Types of Dates and Time

//1-Bit aligned
typedef struct tagDateTime

{
API UINT16 Yyear;
API BYTE month, day, hour, minute, second;

API UINT32

. microsec;
}API DateTime;

3.3 API_ BOOL

typedef int API BOOL,;
#define API TRUE1

#define API FALSE 0

3.4 Market ID

typedef int MARKET ID;
#define MARKET ZCE 1

3.5 Definition of the Types of Data Fields

enum API_FIELDTYPE
{

FTNULL =0,
FTCHAR = 1,

FTLONG =2,

FTSTRING = 3,

FTDOUBLE =4,

FTDATETIME = 5,

FTINT64 = 6 //This type is not to be used for the time being.

3.6 Flagging of Data Streams

typedefAPI BYTE API_DFFLAG;

#define DFF_DIALOG 0 //conversational stream
#define DFF_PRIVATE 1 //private stream
#define DFF_ BROADCAST 2 //broadcast stream

3.7 Status of Data Streams

13

Zhengzhou Commodity Exchange ZCEAPI Handbook

//status of data streams

enum API DFSTATUS

{
DFS CLOSED =0, //connect%on closed
DFS_OPENED = 1, //connection opened
DFS _NEGOTIATEKEY =2, //key negotiation under way, not logged in yet
DFS LOGIN OK =3 //login is OK.

b

3.8 Handles

The handles of connections and data packets are stated to be class pointers in the C++ language, or
void pointers in the C language.

#ifdef _ cplusplus
class MsgPackage;
class ExchangeConnection;

/*data packet handles*/
typedef MsgPackage* MsgPackageHandle;

/*exchange connection handles*/

typedef ExchangeConnection* ExchgConnectionHandle;
#else

/*data packet handles*/
typedef void* MsgPackageHandle;
/*exchange connection handles*/

typedef void* ExchgConnectionHandle;
#endif

3.9 Callback Functions for Return of Data Packets

typedef int (*ExchgPackageCallBack)(void * CallBackArg, ExchgConnectionHandle,
MsgPackageHandle);

Note: ExchgConnectionHandle is the handle provided by the ZCEAPI for a connection.
MsgPackageHandle is the handle provided by the ZCEAPI for a data packet.

3.10 Callback Functions for the Status of a Link

typedef void (*ExchgConnectionCallBack)(void * CallBackArg, ExchgConnectionHandle, int
error_code, const char* error_text);

Note: ExchgConnectionHandle is the handle provided by the ZCEAPI for a connection.

14

Zhengzhou Commodity Exchange ZCEAPI Handbook

4. Introduction to Functions
4.1 Management of the ZCEAPI
4.1.1 Get Version Numbers of the ZCEAPI

‘ int API_GetVersion(char* versionbuf, unsigned int* buflen);

Function:

Parameter
specs:

Return value:

Tips:

To get the character string representing the version number of the ZCEAPI

1) char * versionbuf pointer for the buffer zone used to receive the version
number string;

2) unsigned int buflen length of the buffer zone used to receive the version number
string

If successful, return a version number string;

If the buffer zone length is not sufficient, then return “-1”. In this case, the buflen
returns the minimum length required of the buffer zone.

The normal format for a string is X.X.X.x (X is an integer), for example, 2.10.16.35.

In principle, the length of a string will not exceed 16 bytes.

4.1.2 Initialize the ZCEAPI

API BOOL API Init (const char* logFilePath, const char* APIDataPath);

Function:

Parameter
specs:

Return

value:

Tips:

To initialize the ZCEAPI, and designate diagnostic log routes and diagnostic ports

1) logFilePath path to the API’s log file. The path must be already in place and a
user must have the right to write to it.

2) APIDataPath path to store private API data. The path must be already in place
and a user must have the right to write to it.

If initialization is successful, then return API_TRUE; otherwise, return API_FALSE.
1) The LogFilePath must be already in place. If not, the ZCEAPI will not

automatically create a link and this will lead to a failure of the initialization.

2) The APIDataPath is not used for the time being, so the non-existence of this path
will not affect the initialization of the API.

3) The ZCEAPI will be initialized only once for each app.

4) If a user chooses to log in to the Exchange’s trading system through the protocol
version 11, the default UDP port used to receive quotations is 22677. If a user
needs to change this port, he must, before the initialization process, use the
APIConfig.dat function to designate an alternative port number at the working
directory of the app currently in use. For example, if “22899” is written to the
directory, then the API will open the UDP port according to the given number. The
port must, however, be configured according to the interfaces released by the
Exchange.

5) A successful initialization of the ZCEAPI is the foundation of all subsequent
work. If initialization fails, there is no guarantee for the success of subsequent

operations.

15

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.1.3 Stop the ZCEAPI Service

void API_Stop();

Function:

Tips:

To stop the use of the API library
If this function is called, please do not run any other functions in the ZCEAPI
library, unless the API is re-initialized (caution: please do not stop and then

initialize the API time and again).

It is recommended that this function be called only when a user is ready to exit an
app.

4.1.4 Get Current Time

int API Now(API DateTime*dt);

Function:
Parameter

specs:

Return

value:

Tips:

To get the current time of a local system

API_DateTime*dt pointer of the APIDateTime data used to store current time

If the time is successfully obtained, return “0”’; otherwise, return “-1”.

The local time obtained from a current system through this function is stored in dt,

so it is related to the setting of time zones in the local system.

4.2 Management of Data Packets
4.2.1 Create a Data Packet

MsgPackageHandle API AllocPackage();

Function:
Return

value:

Tips:

To create a ZCEAPI data packet

If the operation is successful, return a handle for the data packet created; otherwise,
return “NULL”.

Before creating a data packet, a user must ensure that the ZCEAPI is successfully

initialized. Otherwise, he will fail to do so.

4.2.2 Recycle a Data Packet

void API_FreePackage(MsgPackageHandle pkg);

Function:
Parameter

specs:

Tips:

To free an existing data packet

MsgPackageHandle pkg handle created by the ZCEAPI for a data packet.

1) The parameter completed must be a data packet handle allocated by the

API_AllocPackage function but not yet freed; otherwise, anomaly will arise.
2) Once a data packet is recycled, it cannot be used again.

16

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.3 Operations of Message Data
4.3.1 Get a Message ID

int API_GetPID(MsgPackageHandle pkg);

Function:
Parameter

specs:

Return

value:

Tips:

To get the PID of a designated message

MsgPackageHandle pkg handle of a data packet for which the PID is to be
obtained

If successful, return the PID of the designated data packet; otherwise, return

“OxFFFFF”.

1) The parameter completed must be a data packet allocated by the

API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized.

4.3.2 Set a Message ID

void API_SetPID(MsgPackageHandle pkg,int pid);

Function:

Parameter
specs:

Tips:

To set the PID of a designated data packet
1) MsgPackageHandle pkg data packet for which the PID is to be set

2) int pid value of the PID to be set
1) The parameter completed must be a data packet allocated by the

API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user must fill in a meaningful PID (please refer to the ZCEAPI Reference
Manual).

3) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized.

4.3.3 Get the Data Type of a Field

enum API FIELDTYPE API_GetFieldType(MsgPackageHandle pkg,int fid);

Function:

Parameter
specs:

Return value:

Tips:

To get the current data type of a field in a designated data packet
1) MsgPackageHandle pkg handle of the designated data packet

2)API_UINTI16 fid number of the field for which the type of data is to be obtained
(please refer to the ZCEAPI Reference Manual).

If successful, return the number of the type of the data field coded “fid” in the data
packet pointed by pkg; otherwise, return “FTNULL”. For specific types of data
fields, please refer to the “Definition of the Types of Data Fields” part of this
handbook.

1) The parameter completed must be a data packet allocated by the
API AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized.

17

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.4 Operations of Fields
4.4.1 Get Characters from a Data Packet

char API GFChar(MsgPackageHandle pkg,int fid,char def="");

Function:

Parameter
specs:

Return value:

Tips:

To get characters from a designated data field in a designated data packet
1) MsgPackageHandle pkg handle of the designated data packet

2) API UINTI16 fid ID of the data field from which the characters are to
be obtained

3) char def default value. In the case of a failure, the return value
will be a default one. In the C++ language, the default value is a space.

If successful, return the characters in the data field coded “fid” in the data packet
pointed by pkg; otherwise, return “def”.
1) The parameter completed must be a data packet allocated by the

API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “C (Character)”.

3) If used to address non-C (Character) fields, this function will make adaptations

accordingly, but does not guarantee the correctness of the value returned.

4) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized; otherwise, the operation will end up in a failure.

4.4.2 Set Character-type Data Fields in a Data Packet

int API_SFChar(MsgPackageHandle pkg,API UINTI16 fid,char val);

Function:

Parameter
specs:

Return value:

Tips:

To set character value for a designated data field in a designated data packet

1) MsgPackageHandle pkg handle of the designated data packet

2) API_UINT16 fid ID of the data field for which the character value is to
be set

3) char val character value to be set

0: successful assignment of value

-1: wrong type of value for the field

-99: illegal data packet

1) The parameter completed must be a data packet allocated by the
API AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “C (Character)”.

3) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized; otherwise, the assignment of value will end up in a failure.

18

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.4.3 Get Integers from a Data Packet

int API_GFInt(MsgPackageHandle pkg,API_UINT16 fid,int def=0);

Function:

Parameter
specs:

Return value:

Tips:

To get integers by integer type from a designated data field in a designated data
packet

handle of the designated data packet
1) MsgPackageHandle pkg

ID of the data field from which the characters are to

2) API UINTI6 fid be obtained
. default value. In the case of a failure, the return value
3) int def will be “0” by default.

If successful, return the integers in the data field coded “fid” in the data packet
pointed by pkg; otherwise, return “def”.

1) The parameter completed must be a data packet allocated by the
API AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields whose fid are
SI (short integers), N (integers) or UN (unsigned integers).

3) If a data field is of the UN type, a user must convert the return value to unsigned
integers.

4) If used to address non-matched fields, this function will make adaptations
accordingly, but does not guarantee the correctness of the value returned.

5) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized; otherwise, the operation will end up in a failure.

4.4.4 Set Integer-type Data Fields in a Data Packet

int API_SFInt(MsgPackageHandle pkg,API UINT16 fid,int val);

Function:

Parameter
specs:

Return value:

Tips:

To set integer value for a designated data field in a designated data packet
1) MsgPackageHandle pkg handle of the designated data packet
2) API _UINT16 fid ID of the field for which the value is to be set

3) char val integer value to be set

0: successful assignment of value

-1: wrong type of value assigned for the field

-99: illegal data packet

1) The parameter completed must be a data packet allocated by the

API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields whose fid are
SI (short integers), N (integers), or UN (unsigned integers).

3) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized; otherwise, the assignment of value will end up in a failure.

19

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.4.5 Get Doubles from a Data Packet

double API_GFDouble(MsgPackageHandle pkg,API UINT16 fid,double def=0.0);

Function:

Parameter
specs:

Return value:

Tips:

To get a value in the format of doubles from a designated data field in a designated
data packet

1) MsgPackageHandle pkg handle of the designated data packet
2) AP UINTIG6 fid '{(I)Db(;f éléi:acilrallet:zcll field from which the characters are
3) double def=0.0 In the case of a failure, the return value will be “0”

by default.)
If successful, return the doubles in the data field coded “fid” in the data packet

pointed by pkg; otherwise, return “def”.

1) The parameter completed must be a data packet allocated by the
API AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “LN (double)”.

3) If used to address non-matched fields, this function will make adaptations
accordingly, but does not guarantee the correctness of the value returned.

4) In the case that a field to be retrieved is completed by a user himself (using the
API_SFDouble function to be introduced below), if, after completion, the pkg is
not transmitted to the backend system or not copied, then whatever completed by
the user will be retrieved through this function. That’s to say, the level of accuracy
completed will not work in this case.

5) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized; otherwise, the operation will end up in a failure.

4.4.6 Set a Double-type Data Field in a Data Packet

int API_SFDouble(MsgPackageHandle pkg,API UINT16 fid,double val,unsigned int

precision=4);

Function:

Parameter
specs:

Return value:

Tips:

To set double value for a designated data field in a designated data packet

1) MsgPackageHandle pkg handle of the designated data packet
2) APL UINTI6 fid ID of the data field for which the value is to be set

3) double val

Double value to be set

The level of accuracy of the double to be set, “4”
4) unsigned int precision binary points by default, “1” binary point on the
minimum level

0: successful assignment of value

-1: wrong type of value for the field

-99: illegal data packet

1) The parameter completed must be a data packet allocated by the

API AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “LN (double)”.

20

Zhengzhou Commodity Exchange ZCEAPI Handbook

3) Precision means the number of binary points. If the number of a value’s binary
points is greater than is indicated by the precision, then the value will retain only
the binary points indicated by the level of precision when sent to the Exchange. If
the value is not transmitted or copied, there will be no loss in the level of precision
for the same value gotten through the API_GFDouble function.

4) When setting the precision of doubles, a user must refer to the level of precision
provided for data fields in the ZCEAPI Reference Manual. Should the precision set
be not consistent with that provided in the Reference Manual, the value set will be
processed at the level of precision specified in the Reference Manual when it is sent
to the Exchange.

5) Zhengzhou Commodity Exchange’s phase 5 system supports 12-bit integers with
2-bit precision or 8-bit integers with 4-bit precision at the maximum (for details,
please refer to the Reference Manual). If there are more floating points than
allowed, the value will not be effectively conveyed.

6) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized; otherwise, the assignment of value will end up in a failure.

4.4.7 Get Character Strings from a Data Packet

int API_GFString(MsgPackageHandle pkg,API_UINT16 fid, char* buf,unsigned int bufsize); ‘

Function:

Parameter
specs:

Return value:

Tips:

To get a value in the format of character strings from a designated data field in a
designated data packet

1) MsgPackageHandle pkg handle of the designated data packet

2) API_UINTI16 fid ID of the data field from which the characters are to be
obtained

3) char * versionbuf pointer for the buffer zone used to receive the character
string

4) unsigned int buflen length of the buffer zone used to receive the character string
Return value>0: if the return value is equal to or smaller than the bufsize, then

return the full length of the character string obtained; if the return value is greater
than the bufsize, then return the length of the buffer zone required to get the entire
data, because it means that the buffer zone is too small and, subject to the size of
the buf, only part of the target data is copied to it.

Return value=0: it means a failure to get the value from a field, or it simply means
that the parameters given cannot get the value at all (as in the case that the buf is
empty and the bufsize is 0).

1) The parameter completed must be a data packet allocated by the
API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “S (character string)”.

3) If used to address non-matched fields, this function will make adaptations
accordingly, but does not guarantee the correctness of the value returned.

4) The bufsize given must be large enough; otherwise, subject to the size of the buf
given, only part of the characters will be copied to the buffer zone.

5) However, the value of the bufsize shall not be greater than the actual size of the
buf; otherwise, memory errors may occur.

6) The character string in this function is not necessarily visible. In the case of a
successful operation, the character string returned is full-length. Note that the
character string received in the buffer zone has no EOT. Therefore, if a user wants
to process the buf as character strings, he must add EOT on his own.

21

Zhengzhou Commodity Exchange ZCEAPI Handbook

7) If this function is used to address the DT-type of data fields, five circumstances
may arise:
@ If, in a DT object, none of the year, month, date, hour, minute, second, and

microsecond values is 0, then the format of the character string gotten shall be:

@ 1If, in a DT object, none of the year, month, date, hour, minute, and second

values is 0, but the microsecond value is 0, then the format of the character
string gotten shall be: YYYY-MM-DD HH:mm:ss

@ If, in a DT object, none of the year, month, and date values is 0, but the hour,

minute, second, and microsecond values are all 0, then the format of the
character string gotten shall be: YYYY-MM-DD

@ If, in a DT object, the hour, minute, and second values are not 0, but the date

value is 0, then the format of the character string gotten shall be:

® If, in a DT object, none of the hour, minute, second values is 0, but the date and
microsecond values are 0 (when only time is available), then the format of the
character string gotten shall be: HH:mm:ss

Note: The signs mentioned above have the following meaning: Y: year; M:
month; D: date; H: hour; m: minute; s: second; i: microsecond (e.g., YYYY

8) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized; otherwise, the operation will end up in a failure.

4.4.8 Set Character-string-type Data Fields in a Data Packet

int API SFString(MsgPackageHandle pkg,API UINT16 fid,const char* buf,unsigned int

bufsize);
Function: To set a value in the format of character strings for a designated data field in a
designated data packet
Parameter
specs: 1) MsgPackageHandle pkg handle of the designated data packet

Return value:

Tips:

2) API UINT16 fid ID of the data field for which the character value is to
be set
3) char* buf head pointer of a character string

4) unsigned int bufsize length of a character string
0: successful assignment of value

-1: wrong type of value for the field

-2: bufsize 0, and the fid not in existence

-99: illegal data packet

1) The parameter completed must be a data packet allocated by the
API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “S (character string)”.

22

Zhengzhou Commodity Exchange ZCEAPI Handbook

3) If bufsize is the length of a character string, then the former must not be smaller
than the latter; otherwise, only characters in the size of the buf will be completed.

4) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized; otherwise, the assignment of value will end up in a failure.

4.4.9 Get Date and Time from a Data Packet

API BOOL API GFDateTime(MsgPackageHandle pkg,API UINT16 fid,API DateTime*val); ‘

Function:

Parameter
specs:

Return

value:

Tips:

To get a value in the format of date and time from a designated field in a designated
data packet

1) MsgPackageHandle pkg handle of the designated data packet

2) API_UINTI16 fid ID of the data field from which the characters are to be
obtained

3) API_DateTime*val pointer of date in the ZCEAPI, pointing to variables that
store the date gotten (parsed per Beijing Time (UTC+8)). For the types of date and
time in the ZCEAPI, please refer to the part “Types of Date and Time” of this
handbook.

If successful, then return API_TRUE; otherwise, return API_FALSE.

1) The parameter completed must be a data packet allocated by the
API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “D (Date)” or “DT (Date and Time)”.

3) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized; otherwise, the operation will end up in a failure.

4) The API time is parsed per Beijing Time (UTC+8). That’s to say, a time value
gotten is to be explained according to Beijing Time. For instance, API DateTime
(2019,11,23,9,45,08,234208) means 09:45:08:234208 on November 23, 2019
Beijing Time.

4.4.10 Set DateTime-type Data Fields in a Data Packet

int API SFDateTime(MsgPackageHandle pkg,API UINT16 fid,API DateTime*val);

Function:

Parameter
specs:

Return value:

Tips:

To set a value in the format of date and time for a designated field in a designated
data packet

1) MsgPackageHandle pkg
2) API _UINTI6 fid

handle of the designated data packet
ID of the data field for which the value is to be set

. pointer of date in the ZCEAPI, pointing to variables that
3) API_DateTime*val store the date set (parsed per Beijing Time (UTC+8))

For the types of date and time in the ZCEAPI, please refer

to the part “Types of Date and Time” of this handbook.
successful assignment of value

=4

-1: wrong type of value for the field
-2 non-transmittable time (locally stored, non-transmittable and non-copyable)

-99: illegal data packet

1) The parameter completed must be a data packet allocated by the

API AllocPackage function but not yet freed; otherwise, anomaly will arise.

23

Zhengzhou Commodity Exchange ZCEAPI Handbook

2) A user is required to refer to the data fields and data field types defined in the
ZCEAPI Reference Manual. This function is applicable to data fields represented
by the fid “D (Date)” or “DT (Date and Time)”.

3) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized; otherwise, the assignment of value will end up in a failure.

4) The API time is parsed per Beijing Time (UTC+8). That’s to say, a time value
set is to be explained according to Beijing Time. For instance, APl DateTime
(2019,11,23,9,45,08,234208) means 09:45:08:234208 on November 23, 2019
Beijing Time.

5) The time set shall fall in the range of 08:00:00, January 1, 1970 to 23:59:59,
December 31, 3000 UTC Time. A user can judge whether a time falls outside of the
range according to a return value.

4.4.11 Judge Whether a Field Is Null

API BOOL API FieldIsNull(MsgPackageHandle pkg,API UINT16 fid);

Function: To judge whether a designated field in a designated data packet is null

Parameter 1) MsgPackageHandle pkg handle of the designated data packet

Spees: 2) API_UINTI6 fid ID of the data field for which a
judgment is to be made

Return

If a designated field is null, then return API_TRUE; otherwise, return
value: API FALSE.

Tips: 1) The parameter completed must be a data packet allocated by the
API AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) This function is equivalent to API GetFieldType() ==
API FIELDTYPE::FTNULL.

3) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized.

4.4.12 Remove a Particular Field

void API_ClearField(MsgPackageHandle pkg,int fid);

Function: To remove a designated field from a designated data packet
Parameter 1) MsgPackageHandle pkg handle of the designated data packet
Specs: 2) API_UINTI16 fid ID of the data field to be removed

1) The parameter completed must be a data packet allocated by the

Tips: API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized.

4.4.13 Remove All Fields from a Data Packet

void API_ClearAll(MsgPackageHandle pkg);

Function: To remove all fields from a data packet

Parameter MsgPackageHandle pkg handle of the designated data packet
specs:

24

Zhengzhou Commodity Exchange ZCEAPI Handbook

Tips: 1) The parameter completed must be a data packet allocated by the APl AllocPackage
function but not yet freed; otherwise, anomaly will arise.
2) All fields, excluding PID, are to be cleared.

4.4.14 Copy a Data Packet

‘ int API_Copy(MsgPackageHandle pkg,MsgPackageHandle source);

Function:

Parameter
specs:

Return

value:

Tips:

To copy the data designated by a source to a data packet identified by a pkg
1) MsgPackageHandle pkg handle of the designated target data packet
2) MsgPackageHandle source handle of the designated source data packet

If the copy is successful, then return “0”; otherwise, return an error
code.

1) The parameters pkg and source must be data packets allocated by the
API_AllocPackage function but not yet freed; otherwise, anomaly will arise.

2) The PID of a data packet is copied as well.

3) Due to the operation of this function, a double set by a user may retain the set
level of precision only.

4.5 Traversal of Data
4.5.1 Move a Data Field Pointer to the First Field

int API_FirstField(MsgPackageHandle pkg);

Function:
Parameter

specs:

Return

value:

Tips:

To find out the first data field in a data packet to be traversed
MsgPackageHandle pkg handle of the target data packet

0: fid of the first field traversed
-1: null data packet
-99: illegal data packet

1) The parameter pkg must be a data packet allocated by the API AllocPackage

function but not yet freed; otherwise, anomaly will arise.

2) The order of data fields is different from that of the assignment of value to a data

packet.

3) Before using this function, a user must ensure that the ZCEAPI is successfully

initialized.
4) This function must be called before traversal.
5) No data fields can be added or deleted before the end of traversal.

6) This function is non-thread safe, so do not traverse a data packet through

multiple threads at the same time.

25

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.5.2 Identify the Next Data Field

int API NextField(MsgPackageHandle pkg);

Function: To get the fid of a next data field in a data packet traversed

Parameter MsgPackageHandle pkg handle of the target data packet

specs:
R >0: fid of the next field traversed
eturn
) -1: traversal of a data packet over
value:
-99: illegal data packet
Tips: 1) The parameter pkg must be a data packet allocated by the API_AllocPackage

function but not yet freed; otherwise, anomaly will arise.

2) The order of data fields is different from that of the assignment of value to a data

packet.

3) Before using this function, a user must ensure that the ZCEAPI is successfully
initialized.
4) No data fields can be added or deleted before the end of traversal.

5) This function is non-thread safe, so do not traverse a data packet through

multiple threads at the same time.

4.6 Management of Connection
4.6.1 Create Exchange Connection

ExchgConnectionHandle API CreateExchgConnection(API BOOL Encrypt, API BOOL
Commpress, MARKET ID Market ,int thread bind cpu, int thread bind cpu udp, API BOOL
drive_auto = API_TRUE);

Function: To create an exchange
connection
Parameter
specs: 1) API_BOOL Encrypt encrypt? APl TRUE Yes, API FALSE No Only

Yes is supported at present.
2) API BOOL Commpress compress? API_TRUE Yes, API_FALSE No
3) MARKET 1D Market ID of the e>fcha1.1ge connected. Please refer to the
- “market ID” in this handbook.
4) thread_bind_cpu number of the CPU to which a driver thread is bound
5) thread bind cpu_udp number of the CPU to which a driver thread is bound
and where a broadcast stream is received through the

UDP protocol
6) drive_auto Whether to automatically initiate a business-driven
thread
Return If successful, return the handle of an exchange connection; otherwise, return a null
value: pointer.
Tips:

1) Before creating an exchange connection, a user must ensure that the ZCEAPI is

successfully initialized. Otherwise, he will fail to do so.

26

Zhengzhou Commodity Exchange ZCEAPI Handbook

2) If the “number of the CPU (starting from 0)” is negative or greater than the
number of CPUs of a computer, then a driver thread is not to be bound to the CPU.
If bound, the thread will occupy the CPU core all the time.

3) If a broadcast stream is not received through the UDP protocol, the parameter
thread bind cpu udp will not be effective, because the driver thread concerned
will not be initiated.

4) If the drive auto parameter is set APl TRUE or left unset, then a connection
will automatically initiate a business-driven thread. If, however, the parameter is
set API_FALSE, then the API will not initiate a driver thread for the connection. In
this case, a user must initiate the thread on his own and call the API_RunEvent

function for the connection.

4.6.2 Set Connection Properties

int API_SetConnectionOpt(ExchgConnectionHandle conn,int keepldle,int keeplnterval, int

keepCount);
Function: To set the properties of a
connection)
Parameter . Handle of an exchange connection
specs: 1) ExchgConnectionHandle conn

Return value:
Tip:

) Idle time of a connection. The unit is
2) int keepldle i
second for Linux platforms, or

microsecond for Windows platforms.
3) int keepInterval Interval for the detection of a connection
The unit is second for Linux platforms, or
4) int keepCount microsecond for Windows platforms.

Times of detection

If successful, return “0”; otherwise, return an error code.

This function must be called before a connection is initiated; otherwise, the setting
will be void.

4.6.3 Run an Event

int FTDAPI_CALL API_RunEvent(ExchgConnectionHandle conn);

Function:

Parameter

specs:

Return

value:

Tips:

This is an event-driven function to be called by a user’s own thread when the user
calls the API CreateExchgConnection function to create a connection, assigning the
value API_FALSE to the drive auto parameter, and using his own thread to replace
an automatic thread to drive a connection.

ExchgConnectionHandle conn handle of an exchange connection

0: event successfully processed
3000: wrong parameter
3029: illegal call

Other values: an error encountered, link disconnected, and event processing over

1) If, when creating a connection, a user chooses to automatically initiate a
business-driven thread (drive auto = API TRUE), he is not advised to call this
function.

27

Zhengzhou Commodity Exchange ZCEAPI Handbook

2) This function is non-thread safe, so do not call it through multiple threads at same
time.

4.6.4 Initiate a Connection to the Exchange

int API_Connect(ExchgConnectionHandle conn, const char* IP, unsigned short port, int wait,
char* errMsg);

Function: To establish a connection to the
Parameter exchange. Handle of an exchange connection
specs: 1) ExchgConnectionHandle conn IP address of trade front
2) const char* IP Trade front port
3) unsigned short port Waiting time in the case of timeout,
4) int wait unit-microsecond

. Output. The memory used to store an
5) char * errMsg error message returned shall be
allocated by a user himself and be in

a size of 64 bytes at least.

0: connected
Return value:

3000: wrong parameter
3027: callback failure
3035: connection to the trade front failed

1) The parameter conn must be the handle of a connection created by the ZCEAPI.
2) Once an exchange connection is established, a user shall log in to the exchange's
trading system as soon as possible; otherwise, the connection will be automatically
shut down.

Tips:

4.6.5 Judge Whether a Connection Has Been Established

API_BOOL API_Connected(ExchgConnectionHandle conn);

Function: To judge whether a connection to the exchange has been successfully established
Parameter ExchgConnectionHandle conn handle of an exchange connection
specs:

Return value: In the case of a successful connection, return API TRUE; otherwise, return

API FALSE.

4.6.6 Log in to the Exchange

int API Login(ExchgConnectionHandle conn,MsgPackageHandle reqPkg, double Wait
, MsgPackageHandle* rspPkg);

Function: To log in to any of the three types of data streams to connect to the exchange’s
trading system
Parameter
specs: 1) ExchgConnectionHandle conn Handle of an exchange connection
Handle of the ZCEAPI packet containing
2) MsgPackageHandle reqPkg login information;
. waiting time in the case of login timeout,
3) double Wait unit: second
4) MsgPackageHandle * rspPkg Output, pointer of the handle of a login

response data packet. In the absence of
response, the pointer is null.

28

Zhengzhou Commodity Exchange ZCEAPI Handbook

Return 0: Login is OK.

value: 3000: Wrong parameter
3001: Connection yet to be established
3002: Error in sending link negotiation data
3003: Link negotiation timeout
3004: Error in sending login data
3005: Login timeout
4001 : Error in login protocol version number
3018: Error in flagging data stream
3019: Duplicate login not allowed
3020: You are logging in to an undesignated seat.
3022: Key agreement verification failed
30271 Driver thread cannot be called.

3051: Generation error of key
Backend error codes

2007: incorrect login mode of data flow

610: illegal trader code

262: trader has been suspended.

673: illegal login request

674: illegal password

675: The system cannot be logged in from this workstation.

2005: login protocol version error

40: unable to log in the system from this front, too many private stream data

requests

7001: duplicate login

Tips: 1) The parameter conn must be the handle of an established connection to the exchange.

2) A user must correctly complete such information as the ID of a trader or data
stream, password and more in the data packet pointed by reqPkg. For details,
please refer to the ZCEAPI Reference Manual.

3) This is a blocking function. If the value of the parameter wait is not large enough,
the function will return API FALSE for timeout. For that reason, the value of wait
shall not be too small, let alone zero.

4) The MsgPackage pointed by rspPkg is read-only.

5) This is a synchronous function, so please do not call it
from the callback functions of the API.

4.6.7 Log out
int API Logout(ExchgConnectionHandle conn,MsgPackageHandle reqPkg, double Wait,
MsgPackageHandle* rspPkg);

29

Zhengzhou Commodity Exchange ZCEAPI Handbook

Function:

Parameter
specs:

Return value:

Tips:

To log out of any of the three types of data streams
1) ExchgConnectionHandle conn handle of an exchange connection

2) MsgPackageHandle reqPkg handle of the data packet that contains logout
information

3) double Wait waiting time in the case of login timeout unit:
second

4) MsgPackageHandle *rspPkg output, pointer of the handle of a logout
response data packet. In the absence of
response, the pointer is null.

0: Logout is OK.

3000: wrong parameter

3006: unable to log out when not logged in
3018: data stream flag error

1) The parameter conn must be the handle of an established connection to the
exchange.

2) A user must correctly complete such logout information as the flag of a stream in
the data packet pointed by reqPkg. For details, please refer to the ZCEAPI
Reference Manual.

3) If the value of the parameter wait is not large enough, the function will return
API FALSE for timeout. In this case, the return value cannot accurately reflect
whether logout is successful or not.

4) The MsgPackage pointed by rspPkg is read-only.

5) This is a synchronous function, so please do not call it from the callback
functions of the APL

6) If a link is disconnected, the login status becomes void immediately. This is
equivalent to automatic logout.

4.6.8 Send a Data Packet

int API Send(ExchgConnectionHandle conn,MsgPackageHandle pkg);

Function:

Parameter
specs:

Return 0:

value:

To send a ZCEAPI data packet

1) ExchgConnectionHandle conn Handle of an exchange connection

2) MsgPackageHandle reqPkg Handle of the data packet to be sent

Sent successfully

3000: Wrong parameter

3009: Unable to send for not logged in

3010: Data packet format error

3015: Unable to identify the data packet, maybe the API version is low

3016: Error in sending login data

3018: Error in flagging data stream

3024: Data packet PID error
3025: Null data packet

3028: Too frequent query

Tips: 1) The parameter conn must be the handle of an established connection to the exchange.

30

Zhengzhou Commodity Exchange ZCEAPI Handbook

2) A user must correctly complete all necessary information in the data packet
pointed by pkg. For details, please refer to the ZCEAPI Reference Manual.

3) This function cannot send login and logout data packets.

4) This function is non-thread safe, so please do not use the same connection to send
data through multiple threads at the same time.

5) The API will limit the number of queries to be initiated at the same time. If the
limit is exceeded, the request will fail, and the error code “3028 (too frequent
query)” will be returned.

4.6.9 Close a Connection to the Exchange

void API_DisConnect(ExchgConnectionHandle conn);

Function: To break the connection to the exchange

Parameter ExchgConnectionHandle conn handle of an exchange connection

specs:

Tip: When the execution of this function is over, a connection is not yet freed, but the

link to the exchange is closed.

4.6.10 Close and Free an Exchange Connection

void API FreeExchgConnection(ExchgConnectionHandle conn);

Function: To close and free a connection to the exchange

Parameter ExchgConnectionHandle conn handle of an exchange connection

specs:

Tip: When the execution of this function is over, a connection to the exchange is closed

first and then freed. Once this function is executed, the handle conn of the
connection cannot be used again.

4.6.11 Get the Status of a Data Stream

enum API DFSTATUS API GetDataFlowStatus(ExchgConnectionHandle conn ,int
DataFlowFlag);

Function: To get the status of a data stream accessed through a designated connection to the
exchange
. Handle of h i
Parameter 1) ExchgConnectionHandle conn andle of an exchange connection

specs: 2) int DataFlowFlag Flag of a data stream

Return value: If successful, return the status of a data stream identified by a DataFlowFlag and
accessed through the exchange connection conn.

Please refer to the “status of data streams” in this handbook.

31

Zhengzhou Commodity Exchange ZCEAPI Handbook

4.7 Set a Callback Function
4.7.1 Set a Notice for Disconnection

void API_SetCloseCallBack(ExchgConnectionHandle conn, ExchgConnectionCallBack
callback,void * CallBackArg);

Function: To set the callback function to be invoked when a designated exchange connection is
closed

Parameter

specs: 1) ExchgConnectionHandle conn Handle of an exchange connection

2) ExchgConnectionCallBack callback Callback function to be set for the
3) void * CallBackArg status of a link

Parameter of the callback function to
be set for the status of a link,
ultimately fed to the callback function.
Please refer to the “Callback
Functions for the Status of a Link”

in Part 3 of this handbook.

4.7.2 Set a Notice for Errors

void API_SetErrorCallBack(ExchgConnectionHandle conn, ExchgConnectionCallBack
callback,void * CallBackArg);

Function: To set the callback function to be invoked when a designated exchange connection
P ¢ encounters an error
s;;zrsr_le er 1) ExchgConnectionHandle conn Handle of an exchange connection

2) ExchgConnectionCallBack callback Callback function to be set for the status

. f a link
3) void * CallBackA 0
) voi alibatkals Parameter of the callback function to be

set for the status of a link, ultimately fed
to the callback function. Please refer to
the “Callback Functions for the Status
of a Link” in Part 3 of this handbook.

Tip: For a link that receives broadcast streams through the UDP protocol, there is the

possibility that two threads simultaneously invoke a callback function, so there is the
need to synchronize the two threads.

4.7.3 Set a Notice for Data Receipt

void API SetRecvCallBack(ExchgConnectionHandle conn, = ExchgPackageCallBack
callback,void * CallBackArg);

Function: To set the callback function for data
processing

1) ExchgConnectionHandle conn Handle of an exchange connection

2) ExchgPackageCallBack callback Callback function to be set for the return of
data packets

Parameter
specs:
1d *

3) void * CallBackArg Parameter of the callback function to be set
for the return of data packets, ultimately
fed to the callback function. Please refer to
the “Callback Functions for the Return
of a Data Packet” in Part 3 of this
handbook.

32

Zhengzhou Commodity Exchange ZCEAPI Handbook

Tips:

1) The login/logout response data packets are to be returned to a user through the output of

the login/logout function.

2) A user cannot call the APl FreePackage () function to release the data packet called
back.

3) For a link that receives broadcast streams through the UDP protocol, there is the
possibility that two threads simultaneously invoke a callback function set, so there is the

need for the callback function to synchronize the two threads.

33

	1. Overview
	1.1 Purpose and Scope
	1.2 Related Documents
	1.3 Introduction
	1.4 Location of the ZCEAPI
	1.5 Communication Method of the ZCEAPI
	1.6 Operating Environment for the ZCEAPI
	1.7 Notes for the ZCEAPI-related Documents

	2. Instructions for the ZCEAPI
	2.1 Overview
	2.2 The Thread-based Architecture
	2.3 Basic Process
	2.3.1 Initialize the ZCEAPI
	2.3.2 Create an Exchange Connection
	2.3.3 Assign a Callback Function to a Link
	2.3.3.1 Define a Callback Function
	2.3.3.2 Set a Callback Function

	2.3.4 Connect to the Exchange
	2.3.5 Log in to the Exchange
	2.3.6 Read and Write Data Packets
	2.3.7 Traverse Data Packets
	2.3.8 Send Data Packets
	2.3.9 Receive Data
	2.3.10 Log out
	2.3.11 Free a Connection
	2.3.12 Stop the ZCEAPI Service

	3. Definition of Data
	3.1 Basic Types of Data
	3.2 Types of Dates and Time
	3.3 API_BOOL
	3.4 Market ID
	3.5 Definition of the Types of Data Fields
	3.6 Flagging of Data Streams
	3.7 Status of Data Streams
	3.8 Handles
	3.9 Callback Functions for Return of Data Packets
	3.10 Callback Functions for the Status of a Link

	4. Introduction to Functions
	4.1 Management of the ZCEAPI
	4.1.1 Get Version Numbers of the ZCEAPI
	4.1.2 Initialize the ZCEAPI
	4.1.3 Stop the ZCEAPI Service
	4.1.4 Get Current Time

	4.2 Management of Data Packets
	4.2.1 Create a Data Packet
	4.2.2 Recycle a Data Packet

	4.3 Operations of Message Data
	4.3.1 Get a Message ID
	4.3.2 Set a Message ID
	4.3.3 Get the Data Type of a Field

	4.4 Operations of Fields
	4.4.1 Get Characters from a Data Packet
	4.4.2 Set Character-type Data Fields in a Data Pac
	4.4.3 Get Integers from a Data Packet
	4.4.4 Set Integer-type Data Fields in a Data Packe
	4.4.5 Get Doubles from a Data Packet
	4.4.6 Set a Double-type Data Field in a Data Packe
	4.4.7 Get Character Strings from a Data Packet
	4.4.8 Set Character-string-type Data Fields in a D
	4.4.9 Get Date and Time from a Data Packet
	4.4.10 Set DateTime-type Data Fields in a Data Pac
	4.4.11 Judge Whether a Field Is Null
	4.4.12 Remove a Particular Field
	4.4.13 Remove All Fields from a Data Packet
	4.4.14 Copy a Data Packet

	4.5 Traversal of Data
	4.5.1 Move a Data Field Pointer to the First Field
	4.5.2 Identify the Next Data Field

	4.6 Management of Connection
	4.6.1 Create Exchange Connection
	4.6.2 Set Connection Properties
	4.6.3 Run an Event
	4.6.4 Initiate a Connection to the Exchange
	4.6.5 Judge Whether a Connection Has Been Establis
	4.6.6 Log in to the Exchange
	4.6.7 Log out
	4.6.8 Send a Data Packet
	4.6.9 Close a Connection to the Exchange
	4.6.10 Close and Free an Exchange Connection
	4.6.11 Get the Status of a Data Stream

	4.7 Set a Callback Function
	4.7.1 Set a Notice for Disconnection
	4.7.2 Set a Notice for Errors
	4.7.3 Set a Notice for Data Receipt

